Μια τράπεζα προσφέρει ετήσιο επιτόκιο 100% (λέμε τώρα!!!) και μια άλλη 50% το εξάμηνο και μια τρίτη 33,33% το τετράμηνο.
Αν καταθέτατε εσείς τα χρήματά σας ποια από τις τρεις περιπτώσεις θα επιλέγατε;
Φαίνεται να είναι το ίδιο αλλά είναι όντως;
Ας υποθέσουμε οτι δανείζετε εσείς σε έναν φίλο σας 1 ευρώ με 100% ετήσιο επιτόκιο.
Σε ένα χρόνο θα έχετε πάρει 1+1=2 ευρώ δηλαδή θα έχετε διπλασιάσει το ποσό σας.
Με 50% επιτόκιο 2 φορές το χρόνο, θα λάβετε 1+1/2 ευρώ το πρώτο εξάμηνο και στο τέλος του χρόνου 1+1/2 φορές αυτού του ποσού δηλαδή (1+1/2)²=2.25 ευρώ.
Ομοίως με επιτόκιο 33.33% το τετράμηνο θα λάβετε λίγο παραπάνω δηλαδη (1+1/3)³=2.37 ευρώ .
Παρατηρούμε πως το ποσό αυξάνεται αν αυξήσουμε τη συχνότητα ανατοκισμού μέσα στο χρόνο.Αυτό σημαίνει πώς με αυτόν τον τρόπο μπορείτε να βγάλετε μια περιουσία;
Η απάντηση είναι μάλλον όχι
Γιατί το όριο τείνει σε πεπερασμένο αριθμό καθώς το n τείνει στο άπειρο.
Ο αριθμός αυτός είναι ο e=2,7182818284.... και έχει πάρει το συμβολισμό του από το πρώτο γράμμα του ονόματος του μαθηματικού Leonhard Euler(1707-1783).
Οι τιμές του n έχουν μεγάλη σημασία όταν παραμένουν "μικρές".Από μια τιμή όμως και μετά , όσο κι αν αυξάνεται το n , το τελικό ποσό αυξάνεται ελάχιστα.
Ο άρρητος αυτός αριθμός συναντάται σε πολλές πρακτικές εφαρμογές αλλά ιδιαίτερο ενδιαφέρον παρουσιάζει η συνάρτηση
f(x)=
γιατί είναι μια συνάρτηση όπου ο ρυθμός ματαβολής της ισούται με τον εαυτό της.Η γραφική της παράσταση είναι η παρακάτω
Kάθε ένα από τα Σ,φ,i,e,π,0,1,γ,f πρέπει να τοποθετηθούν έτσι ώστε να εμφανίζονται μία μόνο φορά σε κάθε στήλη,κάθε γραμμή και σε κάθε τετράγωνο που σχηματίζεται από 9 μικρότερα τετράγωνα.
Τα σύμβολα αυτά σχετίζονται όλα με τον μεγάλο μαθηματικό 5 από τα οποία βρίσκονται στη γνωστή σχέση:
Δοκιμάστε το!
Αν καταθέτατε εσείς τα χρήματά σας ποια από τις τρεις περιπτώσεις θα επιλέγατε;
Φαίνεται να είναι το ίδιο αλλά είναι όντως;
Ας υποθέσουμε οτι δανείζετε εσείς σε έναν φίλο σας 1 ευρώ με 100% ετήσιο επιτόκιο.
Σε ένα χρόνο θα έχετε πάρει 1+1=2 ευρώ δηλαδή θα έχετε διπλασιάσει το ποσό σας.
Με 50% επιτόκιο 2 φορές το χρόνο, θα λάβετε 1+1/2 ευρώ το πρώτο εξάμηνο και στο τέλος του χρόνου 1+1/2 φορές αυτού του ποσού δηλαδή (1+1/2)²=2.25 ευρώ.
Ομοίως με επιτόκιο 33.33% το τετράμηνο θα λάβετε λίγο παραπάνω δηλαδη (1+1/3)³=2.37 ευρώ .
Παρατηρούμε πως το ποσό αυξάνεται αν αυξήσουμε τη συχνότητα ανατοκισμού μέσα στο χρόνο.Αυτό σημαίνει πώς με αυτόν τον τρόπο μπορείτε να βγάλετε μια περιουσία;
Η απάντηση είναι μάλλον όχι
Γιατί το όριο τείνει σε πεπερασμένο αριθμό καθώς το n τείνει στο άπειρο.
Ο αριθμός αυτός είναι ο e=2,7182818284.... και έχει πάρει το συμβολισμό του από το πρώτο γράμμα του ονόματος του μαθηματικού Leonhard Euler(1707-1783).
Οι τιμές του n έχουν μεγάλη σημασία όταν παραμένουν "μικρές".Από μια τιμή όμως και μετά , όσο κι αν αυξάνεται το n , το τελικό ποσό αυξάνεται ελάχιστα.
Ο άρρητος αυτός αριθμός συναντάται σε πολλές πρακτικές εφαρμογές αλλά ιδιαίτερο ενδιαφέρον παρουσιάζει η συνάρτηση
f(x)=
γιατί είναι μια συνάρτηση όπου ο ρυθμός ματαβολής της ισούται με τον εαυτό της.Η γραφική της παράσταση είναι η παρακάτω
όπου φαίνεται πως η εκθετική αύξηση είναι ραγδαία!
Τελειώνοντας, σας δίνω ένα "διαφορετικό" sudoku αφιερωμένο στον Leonhard Euler.
Kάθε ένα από τα Σ,φ,i,e,π,0,1,γ,f πρέπει να τοποθετηθούν έτσι ώστε να εμφανίζονται μία μόνο φορά σε κάθε στήλη,κάθε γραμμή και σε κάθε τετράγωνο που σχηματίζεται από 9 μικρότερα τετράγωνα.
Τα σύμβολα αυτά σχετίζονται όλα με τον μεγάλο μαθηματικό 5 από τα οποία βρίσκονται στη γνωστή σχέση:
Δοκιμάστε το!
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου